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Phase transition and symmetry breaking in the minority game
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We show that the minority game, a model of interacting heterogeneous agents, can be described as a spin
system and displays a phase transition between a symmetric phase and a symmetry broken phase where the
game’s outcome is predictable. As a result a ‘‘spontaneous magnetization’’ arises in the spin formalism.
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Market interactions among economic agents give rise
fluctuation phenomena, which are raising much interes
statistical physics@1,2#. The search for a toy system to stud
agents with marketlike interactions has led to the definit
of the minority game~MG! @2,3#, a model inspired by
Arthur’s ‘‘El Farol’’ problem @4#, which embodies some ba
sic market mechanisms@2# while keeping the mathematica
complexity to a minimum.

In short, the MG is a repeated game whereN agents have
to decide which of two actions~such as buy or sell! to make.
With N odd, this procedure identifies aminority action as
that chosen by the minority. Agents who took the minor
action are rewarded by one payoff unit, whereas the majo
of agents looses one unit. Agents do not communicate
with the other and they have access to a ‘‘public inform
tion,’’ related to past game outcomes, represented by on
P possible patterns.

The strategic point of view of game theory may requi
in a case like this, a prohibitive computational task for ea
of the agents@5#. That is specially true ifN andP are very
large and agents have no complete information on the
tailed mechanism that determines their payoffs, the iden
of their opponents, or even their numberN. In such complex
strategic situations, which are similar to those that age
face in stock markets@2,6#, agents may prefer to simplify
their decision task by looking for simple behavioral rules th
prescribe an action for each of theP possible patterns. This
may be particularly advantageous if computational costs
ist.

This behavior, calledinductive reasoningin Ref. @4#, is
the basis of the MG@2,3#: each agent has a pool ofS rules
which prescribe an action for each of theP patterns. At each
time, she follows her best rule~see below for a more precis
definition!. These rules, called strategies below, are initia
drawn at random among all possible rules, independently
each agent in order to model agents’ heterogeneity of be
and behaviors.

Numerical simulations@3,7,8# have shown that this sys
tem displays acooperativephase for large values of the rat
a5P/N: With respect to the simple ‘‘random agent’’ stat
where each agent just tosses a coin to choose her ac
agents are better off because they get to enstablish a so
coordination. For small values ofa agents receive, on aver
age, poorer payoffs than in the random agent state, a be
ior that has been related to crowd effects in markets@2,7,8#.
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A qualitative understanding of this behavior has been giv
in terms of geometric considerations@2,9#.

In this Rapid Communication we show that the model c
be described as a spin system and, asa5P/N varies, it
undergoes a dynamical phase transition with symme
breaking. The symmetry that gets broken is the equivale
between the two actions: in the symmetric phase (a,ac)
both actions are taken by the minority with the same f
quency~e.g., there are, on average, as many buyers as
ers!. For a.ac , in each of theP possible states, the minor
ity does more frequently an action than the other one, i.e.,
game’s outcome is asymmetric. An asymmetry in the gam
outcome is an opportunity that an agent could in princi
exploit to gain. This is called anarbitrage in economics and
it bears a particularly relevant meaning~see discussions in
@2,7#!. The asymmetry fora.ac naturally suggests an orde
parameter and is related to a ‘‘phase separation’’ in the po
lation of agents: while fora,ac all agents use all of their
strategies, fora.ac a finite fractionf of the agents ends up
using only one strategy which, in the spin formalism, is t
analog of spontaneous magnetization. The pointac also
marks the transition from persistence~for a.ac) to antiper-
sistence (a,ac) of the game’s time series.

Let us start from a sharp definition of the model: We u
1 and2 to denote the two possible actions, so that a gen
action is a sign. At each timet, the information available to
each agent is the stringm t5(x t21 , . . . ,x t2M) of the lastM
actions taken by the minority. This, in our notation, is
string of M minority signsx t2kP$61%. There areP52M

possible such strings, which we shall label by an indexm
51, . . . ,P @10#. The index m t corresponding to
(x t21 , . . . ,x t2M) shall be called the presenthistory, for
short. For each historym, a strategya specifies a fixed action
am. Each agenti 51, . . . ,N hasS52 strategies, denoted b
a6,i , which are randomly drawn from the set of all 2P pos-
sible strategies~the generalization toS.2 strategies will be
discussed below!. We define

v i
m5

a1,i
m 1a2,i

m

2
, j i

m5
a1,i

m 2a2,i
m

2

so that the strategies of agenti can be written asasi ,i
m 5v i

m

1sij i
m with si561. If v i

mÞ0, thenj i
m50 ~and vice versa!

and the player always takes the decisionv i
m whenever the
R6271 © 1999 The American Physical Society
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history ism. The current best strategy of agenti, which she
shall adopt at timet, is that which has the highest cumulate
payoff. Let us defineD i ,t[Ui ,t

(1)2Ui ,t
(2) as the difference be

tween the cumulated payoffsUi ,t
(6) of strategies1 and2 for

agenti at time t. Therefore, her choice is given by

si5sgnD i ,t , ~1!

where ties (D i ,t50) are broken by coin tossing. The diffe
ence in the population of agents choosing the1 and the2
sign, at timet, is then

At5(
i 51

N

asi ,i
m t 5Vm t1(

i 51

N

j i
m tsi , ~2!

whereVm5( iv i
m . The sign chosen by the minority give

the minority signat time t

x t52sgnAt ~3!

and this determines the new historym t11, which corresponds
to the string (x t , . . . ,x t2M11) @10#. Finally, each agenti
rewards those of her strategies which have predicted the
sign (as,i

m t 5x t) updating the cumulated payoffsUi ,t11
(6)

5Ui ,t
(6)1a

6,i
m t x t . This implies that the cumulated payoff di

ferenceD i ,t is updated according to

D i ,t115D i ,t12x tj i
m t . ~4!

Equations~1!–~4! update the state$m t ,D i ,t% of the system
from t to t11. With an initial condition~e.g.,m051, D i ,0
50, ; i ) the dynamics of the MG is completely specifie
The ‘‘quenched’’ variables$Vm,j i

m% play here the same rol
as disorder in statistical mechanics@11#.

An important quantity in the MG is the variances2

5^A2& of the differenceA in the sizes of the two popula
tions, wherê •& is a time average in the stationary state
the process specified by Eqs.~1!–~4!. The number of win-
ners, at each time step, is (N2uAu)/2'(N2s)/2 so that
smaller fluctuationss2 correspond to larger global gain. A
population of random agents would yields25N. Numerical
simulations@3,7,8# ~see Fig. 1! show that, fora5P/N large

FIG. 1. Top:s2/N vs a5P/N for P52M with M55, 6, and 7.
Bottom: u2 andf versusa for the same system sizesP. The ver-
tical dashed line is ata50.34'ac .
ht

f

enough, agents with inductive reasoning manage to beh
globally better~i.e., s2,N) than random agents, wherea
s2.N for smalla ~see Fig. 1!. However, no singularity~and
no order parameter! has been yet identified in order to loca
a phase transition.

As shown in Ref.@12#, to a good approximation one ca
neglect the coupling of the dynamics ofD i ,t and m t and
replace the dynamics of the latter by random sampling of
history space, i.e., Prob(m t5m)51/P, ;m. This simplifies
considerably our discussion since then

s2.
1

P (
m51

P

~Vm!212(
i 51

N

hi^si&1 (
i , j 51

N

Ji , j^sisj&, ~5!

where^•& stands for a time average and

hi5
1

P (
m51

P

Vmj i
m , Ji , j5

1

P (
m51

P

j i
mj j

m . ~6!

The fieldhi measures the difference of correlation of the tw
strategies withVm, whereas the couplingJi , j accounts for
the interaction between agents as well as for agents s
interaction (Ji ,i). The structure of the couplings~6! is remi-
niscent of neural networks models@11#, wherej i

m play the
role of memory patterns. This similarity confirms the conc
sion of Refs.@2,7,9# that the relevant parameter is the rat
a5P/N between the number of patterns and the numbe
spins.

The key element that is at the origin of the behavior of t
model is the fact that for each historym, there are agents
which always take the same decision. This gives rise to
time independent contributionVm in A, which produces a
bias in the value ofx t wheneverm t5m. A measure of this
bias, is given by the parameter

u5A1

P (
m51

P

^xum&2, ~7!

where^xum& is the conditional average ofx t given thatm t
5m. Loosely speaking,u measures the presence of inform
tion or arbitrages in the signalx t . If u.0 an agent with
strategies of ‘‘length’’M5 log2 P can detect and exploit this
information if one of her strategies is more correlated w
^xum& than the other. More precisely, we observe that ifv i
[^D i ,t112D i ,t&Þ0, thenD i ,t.v i t grows linearly with time,
and the agent’s spin will always take the valuesi5signv i .
We shall call this afrozenagent, since her spin variable
frozen. We find

v i5^x tj i
m t&.

1

P (
m51

P

^xum&j i
m}2hi2(

j 51

N

Ji , j^sj&, ~8!

where the last equation relies on an expansion of^xum& to
linear order inA @13#.

It is instructive to consider first the case where oth
agents choose by coin tossing~i.e., ^sj&50 for j Þ i ) so that
v i}2hi2Ji ,i^si&. If v iÞ0, then si5sgnv i52sgn(hi
1Ji ,i^si&). But this last equation has a solution only ifuhi u
.Ji ,i , whereas otherwiseu^si&u,1 and v i50. Note that
Ji ,i.1/2 and thathi can be approximated by a Gaussi
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variable with zero average and variance (4a)21. This means
that uhi u!Ji ,i for a@1, which implies that most agents hav
^si&'0 in this limit and we can indeed neglect agent-ag
interaction. This allows one to compute the probability for
agent to be frozen,

f5P$uhi u.Ji ,i%}e2a/2, ~9!

for a@1. Numerical simulations show that f
}e2(0.3760.02)a indeed decays exponentially. Asa→`, the
random agents limit is attained because^si&→0 for all i and
^sisj&5^si&^sj& for iÞ j . By Eq. ~5! we find s2

5(m(Vm)2/P1( iJi ,i.N.
The same argument applies in general, with the differe

that the ‘‘bare’’ fieldhi must be replaced by the ‘‘effective’
field h̃i5hi1( j Þ iJi , j^sj&. In order for agenti to get frozen,
her effective fieldh̃i must ovecome the self-interactionJi ,i ,
i.e., uh̃i u.Ji ,i.1/2. If this condition is met,si52sgnh̃i . It
can also be shown that a frozen agent will, on average,
ceive a larger payoff than an unfrozen agent@14#. Loosely
speaking, one can say that a frozen agent has agoodand a
bad strategy and the good one remains better than the
one even when she actually uses it. On the contrary, unfro
agents have two strategies, each of which seems better
the other when it is not adopted. In this sense, symm
breaking in ^xum& induced a sort of breakdown in thea
priori equivalence of agents’ strategies.

A quantitative analysis of the fully interacting syste
shall be presented elsewhere@14#. For the time being we
shall discuss the behavior of the system on the basis of
tensive numerical simulations. Figure 1 reports the beha
of u, f ands2 as functions ofa for several values ofP. As
a decreases, i.e., as more and more agents join the game
arbitrages opportunities, as measured byu decrease. In loose
words, agents’ exploitation of the signalVm weakens its
strength by screening it with their adaptive behavior. If t
numberN of agents is small compared to the signal ‘‘com
plexity’’ P52M, agents exploit only partially the signalVm,
whereas ifN@P thenVm is completely screened by agent
behavior andu50. As Figure 1 shows the parameteru dis-
plays the characteristic behavior of an order parameter wi
singularity atac'0.34. Accordingly, also the fractionf of
frozen agents drops to zero asa→ac

1 . The comparison be
tween different system sizes in Fig. 1 strongly suggests
f drops discontinuously to zero atac ~and it also gives the
value ofac). The vanishing off is clearly a consequence o
the fact thatu also vanishes atac . Indeed if ^xum&50 for
all m, by Eq. ~8!, also v i50 for all i, so thatD i ,t remains
bounded andu^si&u,1.

The transition can also be understood in terms of the v
ablesD i ,t as an ‘‘unbinding’’ transition asa→ac

2 : For a
,ac a ‘‘bound state’’ exists with finiteD i ,t , which corre-
sponds to the fact that the equationsv i50, i 51, . . . ,N ad-
mit a solution withu^si&u,1, ; i @14# ~only P of the equa-
tions v i50 are linearly independent!. For a.ac this is no
longer true and the population separates: a fractionf of
variables D i ,t acquire a constant ‘‘velocity’’v iÞ0 ~with
u^si&u51), whereas for the remaining agentsv i50, D i ,t re-
mains bounded andu^si&u,1.
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It is suggestive to observe thatv i}2(]s2/]si) so that the
dynamics of the minority game is actually similar to a sp
dynamics with Hamiltonians2. Indeed either the spin is fro
zen in the direction that minimizes2siv i(si), or its average
^si& is such thatv i50. This then explains why cooperatio
occurs in the MG. A closer analysis, to be reported elsewh
@14#, reveals that indeed the stationary state of the MG
described by the ground state properties of an Hamilton
very similar tos2. Finite size scaling suggests thats2 has a
minimum atac with a discontinuity in its derivative~see Fig.
1!. These conclusions are indeed confirmed by exact res
@14#. It is worth stressing, however, that the qualitative a
pects of the transition are already captured at the simple l
of approximation of Eq.~8!.

Let us go back to Fig. 1. Aboveac agents do not fully
exploit the informationVm and, as a result,̂xum&Þ0. Fig-
ure 2 shows thatx t shows persistence in time, in the sen
that when m t5m t1t the minority signs x t and x t1t
tend to be the same. This persistence disappe
^x tx t1tum t5m t1t&→0 asa decreases and it turns into ant
persistence for smallera. The oscillatory behavior in Fig. 2
has indeed period 2P, which means that typically when th
population comes again on the same historym it tends to do
the opposite of what it did the time before. Even if finite si
effects do not allow a definite conclusion, it is quite like
that this change in time correlations also occurs atac @14#.
Time correlations, even though of opposite nature,
present both above and belowac . These are like arbitrage
in a market which could be exploited by agents. In this se
the market isefficient, i.e., arbitrage free, only fora5ac .

The same qualitative behavior is expected when age
have S.2 strategies. Again for a given historym it may
happen that all theS agent’si strategies prescribe the sam
action: agenti will do that action no matter what strategy sh
has chosen. AsS increases, this will occur for a smaller an
smaller number of histories~more precisely with a probabil
ity 212S). This shall correspond to a weaker signalVm,
which is in complete agreement with the observation@7,9# of
shallower features for largerS. Note that for each agent i
would be rewarding to increase the number of strategies
cause they would have more chances to outguessx t . At the
same time, if all agents increaseS the game becomes les
rewarding for all of them, at least fora.ac . This situation

FIG. 2. Temporal correlation ofx t on the same history,
^x tx t1tum t5m t1t&, averaged over all histories vst (106 itera-
tions, M56, a50.5, 0.22, and 0.1)
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is typical of games, such as thetragedy of commons, where
many agents interact through a global resource@15#.

The conditionv i50 for the bound state in the symmetr
phase involvesP equations with (S21)N variables. This
suggests that in general the scaling parameter isa5P/@(S
21)N#. The curve s2/N as a function of a5P/@(S
21)N# collapse remarkably well one on the other fora
<ac ~especially forS.2) but not for a.ac @e.g., in the
large a behaviorf}e2C(S)a we found C(2)'0.37, C(3)
'1.50 andC(4)'2.90].

Our approach also implies that no coordination is poss
if agents haveS52 opposite strategies (a1,i

m 52a2,i
m ) be-

cause thenVm50. Numerical simulations show that indee
s2>N for all a.0 in this case.

The same qualitative behavior also occurs in a wide ra
of related models. First, total freezing occurs in major
models. Note indeed that changing the sign of Eq.~3! would
also change the sign in Eq.~8!. In particular the self-
interactionJi ,i changes sign so that it becomes favorable
sh
ac
ct
p

st
le

e

r

each agent to stick to only one strategy anyway. The mo
is therefore trivial. More interesting models are obtain
keeping the ‘‘frustration’’ effects of the MG but changin
the definition of payoffs in Eq.~4!. It can be shown@14# that
the phase transition and the largea behavior are quite robus
features of minority games~see, e.g.,@13#!.

In summary, we find that a phase transition occurs in
minority game. The cooperative phase (a.ac) is character-
ized by the presence of a fractionf of frozen agents~who
use only one strategy!, unexploited arbitrages (^xum&Þ0),
and persistence in the global signalx t . In the symmetric
phase (a,ac) inductive dynamics is inefficient: agent
adopt strategies when they are no longer good. There is
arbitrage~for strategies of lengthM ) to exploit and the sig-
nal shows anti-persistence.

We acknowledge Y.-C. Zhang for enlightening discu
sions, useful suggestions, and for introducing us to the
nority game. This work was partially supported by Swi
National Science Foundation Grant No. 20-46918.98.
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